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We study the work fluctuations of a particle subjected to a deterministic drag force plus a random forcing
whose statistics is of the Lévy type. In the stationary regime, the probability density of the work is found to
have “fat” power-law tails which assign a relatively high probability to large fluctuations compared with the
case where the random forcing is Gaussian. These tails lead to a strong violation of existing fluctuation
theorems, as the ratio of the probabilities of positive and negative work fluctuations of equal magnitude
behaves in a nonmonotonic way. Possible experiments that could probe these features are proposed.
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The study of fluctuations in systems driven in nonequilib-
rium steady states has concentrated lately on a special sym-
metry property referred to as the fluctuation theorem or fluc-
tuation relation. The first studies of this symmetry focused on
the entropy production of nonequilibrium systems �1,2�, but
it was soon realized that the same symmetry holds for other
quantities of interest, such as the work W� performed on a
nonequilibrium system during a time � �3�. In the context of
this quantity, we define a fluctuation relation �4� as follows.
Assuming that W� is extensive in �, we say that the probabil-
ity density P�W�� of W� satisfies a fluctuation relation or, to
be more precise, a conventional fluctuation relation if

P�W� = w��
P�W� = − w��

= ec�w, �1�

where c is a constant which depends neither on � nor w. We
also say that P�W�� satisfies a conventional fluctuation rela-
tion if the above equality holds, when properly scaled �see
below�, in the limit �→�. In that case, we speak of a sta-
tionary conventional fluctuation relation.

One important problem with fluctuation relations, which
is as yet unresolved, is to determine the class of nonequilib-
rium systems or, more precisely, the class of nonequilibrium
observables �5� whose fluctuations satisfy a conventional
fluctuation relation. Our understanding of this issue at this
point is that this relation holds for two general classes of
systems: �i� finite, deterministic systems having a sufficiently
chaotic dynamics �2,6� and �ii� finite, stochastic systems
whose evolution is a Markov process �7�. There are subtle
points to be taken into account, however. In some cases,
boundary conditions or special forms of large deviations may
restrict the range of validity of conventional fluctuation rela-
tions, and in these cases, corrections or extensions of the
conventional fluctuation relation have been proposed �8,9�.

Our goal in this paper is to expand this picture of fluctua-
tion relations by studying a model of a nonequilibrium sys-
tem whose work fluctuations neither obey the conventional
fluctuation relation nor the extended fluctuation relation of
van Zon and Cohen �8�. Based on this model, we propose a

different fluctuation relation and compare it, from the general
point of view of large deviation theory, with the conventional
fluctuation relation defined in Eq. �1�. In the end, we also
discuss two experiments for which “anomalous” fluctuations
similar to the ones found for our model could be observed.
The first experiment is related to dry friction, while the sec-
ond draws on recent experiments on granular gases.

The specific model that we study is a variation of the
Langevin model studied recently by van Zon and Cohen �8�,
which describes the motion of a particle subjected to three
forces: a deterministic force derived from a particle-
confining harmonic potential, a friction force, and a random
force, i.e., a noise. The combined effect of these forces on
the particle is described, in the overdamped limit, by the
Langevin equation

ẋ�t� = − ��x�t� − x*�t�� + ��t� , �2�

where x�t� denotes the position of the particle at time t, x*�t�
the position of the center of the harmonic potential at t, � a
constant related to the ratio of the strengths of the potential
and the friction, and ��t� the random forcing. For simplicity,
we assume that the center of the potential moves at constant
speed v*, i.e., x*�t�=v*t. Finally, and this is where we depart
from the model of �8�, we assume that ��t� represents a Lévy
white noise, i.e., an uncorrelated noise obeying a Lévy sta-
tistics �10�. Such a noise process is entirely defined by its
characteristic function

G��k� = �eik·�� =� D���P���exp�i�
0

�

k�t���t�dt	 , �3�

which, in the case of symmetric Lévy white noise, is taken to
have the form �10,11�

G��k� = exp�− b�
0

�


k�t�
�dt	 , �4�

with b�0 and 0��	2. Gaussian white noise is a special
case of the noise process, obtained by choosing �=2. For
this case, which is the typical case considered by van Zon
and Cohen, ���t��=0 and ���t���t���=2b
�t− t��.

The introduction of Lévy noise with �� �0,2� in Lange-
vin equations is often perceived as being physically unrea-*ht@maths.qmul.ac.uk
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sonable because it causes x�t� to have an infinite variance,
which implies that there can be no fluctuation-dissipation
relation connecting the strength of the friction to the variance
of the noise �10�. This criticism indeed applies if we regard
the noise as being internal, i.e., as arising, like the friction,
from the environment surrounding the particle. However, if
we regard the noise as being external, i.e., as being an exog-
enous driving force, then there is no problem in assuming
that ��t� is Lévy distributed. In that case, the friction and the
external noise are decoupled, and one is free to adopt any
model of noise. This point will be clarified again when we
discuss the experiments that we have alluded to above.

For now we leave these considerations aside and attempt
to calculate the probability density P�W�� of the work W�

performed on the Lévy particle by the harmonic drag force
during a time � �3�:

W� = − v*�
0

�

�x�t� − x*�t��dt . �5�

To carry out this calculation, it is convenient to study the
dynamics of x�t� in a comoving frame with the change of
coordinate y�t�=x�t�−x*�t�, so that W�=−v*�0

�y�t�dt. The dy-
namical equation for y�t� reads

ẏ�t� = − �y�t� + ��t� , �6�

where ��t�=��t�−v* represents a white noise with mean or
“drift” −v*.

At this point, we proceed to calculate P�W�� by calculat-
ing its characteristic function, defined as

GW�
�q� = �eiqW�� = �

−�

�

P�W� = w�eiqwdw . �7�

A key mathematical observation here is that this characteris-
tic function can be obtained from the characteristic function
Gy�k� of the process y�t� by using k�t�=−v*q for t� �0,��
and k�t�=0 otherwise. With this choice of k�t�, we indeed
obtain from Eqs. �4� and �5�

Gy�k� =�exp�i�
0

�

k�t�y�t�dt	 = GW�
�q� . �8�

In order to find Gy�k�, we next solve the Cáceres-Budini
formula associated with y�t� �12�:

Gy�k� = G��r�, r�l� = �
l

�

e��l−t�k�t�dt . �9�

In applying this formula to our model, we assume that y�0�
=x�0�=0. We also adopt at this point dimensionless units by
setting �=1 and b=1. Noticing that

G��r� = exp�− iv*�
0

�

r�l�dl	G��r� , �10�

we can write

GW�
�q� = exp�− iv*�

0

�

r�l�dl − �
0

�


r�l�
�dl	 . �11�

By performing the integrals involved in this expression, we
arrive at

GW�
�q� = eiMq−V
q
�, �12�

where

M = ��� + e−� − 1� , �13�

V = ��/2�
0

�


el−� − 1
�dl , �14�

having defined �= �v*�2.
This characteristic function is the main mathematical re-

sult of this paper, from which P�W�� is obtained by an in-
verse Fourier transform. In the present case, there is no need
to explicitly compute the inverse Fourier transform because
the form of GW�

�q� shown in Eq. �11� already tells us that
P�W�� is a symmetric Lévy distribution having the same in-
dex � as the noise ��t� �11�. The parameter M is the value at
which P�W�� is centered, while V is a measure of the width
of P�W��; see Fig. 1. The index �, finally, determines how
the tails of P�W�=w� decay as 
w
→�. It is at this point that
we encounter two very different types of fluctuations.

A first type arises from Gaussian white noise, which is
obtained again with �=2. For this case and for the
particular initial condition that we consider here—namely,
x�0�=0— P�W�� has an exact Gaussian form

P�W� = w� =
1

�2�2
e−�w − M�2/�2�2�, �15�

with mean M given by Eq. �13� and variance �2 given by

�2 = 2V = ��2� − 3 + 4e−� − e−2�� . �16�

This form of P�W�� obeys a stationary conventional fluctua-
tion relation. Indeed, since M ��� and �2�2���2M in the
limit �→�, we have
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FIG. 1. �Color online� �a� Plot of P�W�=w� for various values of
� �M =V=1�. �b� Log-Log plot of P�W�=w�.
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g��p� =
P�W� = p���

P�W� = − p���
� ep��, �17�

with subexponential corrections in �. This result confirms
what van Zon and Cohen have reported in �8� using a differ-
ent calculation technique. Here, p is the scaled �intensive�
value of W� defined as p=W� / �W��, with the brackets denot-
ing an ensemble average.

An entirely different case of fluctuations arises when
��2, i.e., when �� �0,2�. In this case, P�W�� is not Gauss-
ian anymore. Rather, it is a so-called strict Lévy distribution
�11� having, as is well known, power-law tails of the form

P�W� = w� � 
w
−1−�, �18�

as w→ ±�; see Fig. 1�b�. Because of these power-law tails,
it is clear that P�W�� does not satisfy a fluctuation relation of
the form defined by Eq. �1�, even in the long-time �station-
ary� regime. To be sure, consider the case �=1, for which we
have the following exact solution:

P�W� = w� =
1



V

�w − M�2 + V2 , �19�

with M given, as before, by Eq. �13� and V
=�1/2��−1+e−����1/2�. This form of distribution is known
as a Cauchy or Lorentz distribution and behaves like 
w
−2

for large work values. Using this explicit form of P�W��, we
obtain in the limit �→�

g��p� �
��p + 1�2 + 1

��p − 1�2 + 1
. �20�

As shown in Fig. 2, this form of g��p� is not a monotonic
function of p, contrary to its Gaussian counterpart. In the
Cauchy case, we further have that g��p� does not asymptoti-
cally depend on time, which implies that measuring W� over
longer and longer integration times � leads to no appreciable
difference in the behavior of the fluctuations of the scaled
variable p. In the Gaussian case, g��p� does depend on time,
with the consequence that negative fluctuations of the work
get exponentially suppressed as �→�.

The asymptotic time independence of g��p� for Cauchy
white noise is special and does not carry over to other values
of � in the range �0,2�. However, since all strict Lévy distri-

butions have power-law tails, P�W�� cannot satisfy a conven-
tional fluctuation relation for any �� �0,2�. Indeed, because
of �18�, we have

lim
p→±�

g��p� = 1 �21�

for all �� �0,2� �Fig. 2�. In words, this means that large
negative fluctuations of W� are just as likely to happen as
large positive fluctuations of equal magnitude. For �=2, by
comparison, we have g��p�→� when p→� and
g��p�→0 when p→−�, which implies again that positive
fluctuations of W� are exponentially more probable than
negative fluctuations. This difference in behavior clearly
shows that the fluctuations of the work performed on a par-
ticle driven by strict Lévy white noise satisfy an entirely
different kind of fluctuation relation when compared with its
Gaussian noise counterpart. Following a terminology used in
studies of Lévy noise �11�, we call this fluctuation relation,
satisfying both �18� and �21�, an anomalous fluctuation
relation.

An important property of the density P�W�� brought about
by its power-law tails is that it does not have the form of a
large deviation probability. By this we mean that P�W�� does
not have the asymptotic form

P�W� = w�� � e−�I�w� �22�

in the limit �→�, where I�w� is some function which does
not depend on � �13�. This observation is crucial because it
explains why P�W�� fails to satisfy a normal �i.e., conven-
tional or extended� fluctuation relation even if the Langevin
model studied here is Markovian. The fact is that the Markov
property is not a sufficient condition for having a normal
fluctuation relation, as is demonstrated by our model. What
is essential is that the observable of interest be governed by a
probability density having a large deviation form. Note in-
deed that in order for P�W�� / P�−W�� to be exponential in �,
P�W�� must itself be exponential in �, as in �22�. Here, P�W��
has a large deviation form only for �=2, which is why this
value gives rise to a normal fluctuation relation, while all the
other values of � give rise to an anomalous fluctuation rela-
tion. A more detailed explanation of this point together with
a complete analysis of P�W�� for values of � other than 1
and 2 will be given in another paper �14�.

To complement the theory presented so far, we now sug-
gest an experiment that could be used to observe the anoma-
lous fluctuation relation displayed by our model. As men-
tioned before, the type of physical system that we must look
for is one in which the noise is introduced externally and can
be tailored to mimic Lévy white noise. One such system is
provided by an experiment recently reported by Buguin et al.
�15�, in which a solid object placed on a solid plane is set in
motion by rapidly vibrating the plane horizontally. In �16�,
de Gennes considered the possibility of vibrating the plane
using Gaussian white noise and provided various theoretical
predictions for this case, based on a Langevin equation con-
taining a dry friction term and a noise term, uncorrelated
with the friction term, representing the random motion of the
plane. Repeating the experiment of Buguin et al. with Gauss-
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FIG. 2. �a� Comparison of g��p� and �b� ln g��p� for the Cauchy
�solid line� and Gaussian �dashed line� cases ��=1, �=1, and
�=1 for the Gaussian case�.
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ian white noise, one could check whether a normal fluctua-
tion relation for the work W� performed by the plane on the
moving object during a time � holds. Then, using Lévy white
noise, one could check whether an anomalous fluctuation
relation holds for W� �17�.

A different experimental investigation of anomalous fluc-
tuations could be based on a gas of inelastically colliding
particles, maintained in steady states by rapidly vibrating its
container. Several studies of this so-called “granular gas”
have appeared recently �see, e.g., �18,19�� and focus on the
fluctuations of the power injected by the vibrations. In this
context, two types of vibrations have been considered—
namely, periodic forcing and Gaussian white noise—and for
these it appears that normal fluctuation relations hold in the
short-time regime where � is comparable with the particles’
mean free time �18�. In view of our model, one could change
the vibrations from Gaussian to Lévy white noise and see
whether an anomalous fluctuation relation similar to the one
found here holds for the short-time fluctuations of the in-
jected power. One could also check that the distribution of
the injected power does not have the form of a large devia-
tion probability when strict Lévy noise is used. This can be
done in simulations and, at least in principle, in real experi-
ments.

Note that Lévy noise, like Gaussian noise, is a proper

form of noise, in the sense that its realizations are always
finite �11�. Therefore, forcing an object with a Lévy noise
having an infinite variance, or even an infinite mean, does
not imply that we supply that object with an infinite amount
of energy. In particular, Lévy noise cannot supply an infinite
amount of heat to a granular gas in a finite amount of time.

To summarize, we have shown that the work fluctuations
of a nonequilibrium system can show different behaviors de-
pending on the form of noise perturbing the system. This was
illustrated with a Langevin equation perturbed by Lévy white
noise. For this model, we have shown that the probability
density of the work fluctuations does not have the form of a
large deviation probability, since it has power-law tails.
These fluctuations lead therefore to a fluctuation relation that
differs from the conventional and extended fluctuation rela-
tions discussed up until now. Other noises behaving asymp-
totically like Lévy white noise should give rise to similar
results, since Lévy distributions are stable �11�. In this sense,
the results obtained here should be representative of a large
class of fluctuation relations associated with “power-law”
noises having infinite variances.
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